logo
Computer Engineering - Model Identification and Data Analysis

Model Identification and Data Analysis


Synthetic program:

The objective of this course is to present the methods and algorithms for data interpretation by the synthesis of mathematical models. These topics have both significant methodological value and remarkable application impact, and a number of industrial applications will be presented during the classes. In the first part of the course we focus on input output models, and the main topics are: description of uncertainty in data and determination of hidden correlations, spectral analysis, prediction techniques, prediction error identification methods, characterization of the model complexity, recursive and adaptive estimation methods.

 

L'obiettivo del corso Model Identification and Data Analysis (MIDA) è di sviluppare negli studenti la capacità di estrarre ("apprendere") informazioni utili dai dati. Il corso, che conduce progressivamente lo studente attraverso la comprensione dei principi e gli strumenti per la modellistica "black-box" e l'analisi dei dati, è diviso in due parti. Nella seconda parte (MIDA 2) viene presentata la tecnica del filtro di Kalman (la più importante tecnica per la stima di variabili e di SW-sensing), e tecniche avanzate di identificazione di modelli ed analisi dei dati: tecniche di identificazione nello spazio di stato, tecniche di identificazione nel dominio della frequenza, modellistica non lineare, progettazione diretta a partire dai dati di sistemi di controllo.

Lecture Notes

Complete course:

Type File name Year
Digital notes Resume of the course - First module 2019/2020
Digital notes Completed notes of the course - modulo 1 2018/2019
Digital notes Completed notes of the course - modulo 2 2012/2013

Divided by topic:

Type File name Year
Digital notes Kalman predictor and filter 2016/2017
Digital notes Model identification: New version 2019/2020
Digital notes Model identification: Old version 2016/2017

Other:

Type File name Year
File not available...

Exercises

Complete course:

Type File name Year
Digital notes Exercise - module 2 2012/2013

Divided by topic:

Type File name Year
File not available...

Other:

Type File name Year
File not available...

Exams

First partial exam:

Type Date
Text and solution 09/01/2020
Text 09/09/2013
Text 11/07/2013
Text 25/06/2013
Text and solution 09/05/2013
Text 24/09/2012
Text 13/09/2012
Text 13/07/2012
Text 26/06/2012
Text and solution 06/07/2011

Second partial exam:

Type Date
Text and solution 18/07/2019
Text and solution 05/07/2018
Text and solution 20/06/2018
Text 20/09/2013
Text 09/09/2013
Text 11/07/2013
Text 07/07/2004
Text 23/06/2004

Full exam:

Type Date
Text and solution 02/09/2019
Text and solution 18/07/2019
Text and solution 24/06/2019

Oral exam:

Type Date
File not available...

Multiple choice test:

Type Date
File not available...

Other:

File name
File not available...

Other

Laboratory:

File name Year
File not available...

Projects:

File name Year
File not available...

Presentations:

File name Year
File not available...

Collections of notes, exercises or exams:

Tables:

File name Year
File not available...

Etc:

Live

Quick daily notes, exercises and audio recordings. Files will be approved on priority but deleted after 365 days. 2 points will be assigned by default.

Quick contents:

File name Date
File not available...